
5 

N A S A  TECHNICAL NOTE 

LOAN COPY: RE 
AFWL (WL 

KtQ8TtAND AFB 

THE APERTURE ADMITTANCE 

WAVEGUIDE ILLUMINATING 
A PERFECTLY CONDUCTING SHEET 

OF A GROUND- PLANE-MOUNTED 

by J. Eurl Jones und C. T. SwzjCt 

LungZey Reseurch Center 
Lungley Stution, Humpton, Vu. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. MARCH 1968 



TECH LIBRARY KAFB, NM 

I Illill 11111 lllll lllll lllll 1 llll Ill1 1111 
0333483 

T H E  A P E R T U R E  ADMITTANCE OF A 

GROUND- PLANE-MOUNTED WAVEGUIDE ILLUMINATING A 

P E R F E C T L Y  CONDUCTING S H E E T  

By J. E a r l  J o n e s  and  C. T. Swift 

Langley R e s e a r c h  C e n t e r  

Langley Stat ion,  Hampton ,  Va. 

N A T I O N A L  AERONAUTICS AND SPACE ADMINISTRATION 

For sale by the Clearinghouse far Federal Scientific and Technical Informotion 
Springfield, Virginia 22151 - CFSTl price $3.00 



THE APERTURE ADMITTANCE OF A 

GROUND-PLANE-MOUNTED WAVEGUIDE ILLUMINATING A 

PERFECTLY CONDUCTING SHEET 

By J. Ea r l  Jones and C. T. Swift 
Langley Research Center 

SUMMARY 

The Fourier transform technique is applied to derive an expression for the aperture 
admittance of a ground-plane-mounted, transverse electric and magnetic (TEM) mode- 
excited parallel-plate waveguide illuminating a perfectly conducting sheet. 
aperture admittance expression, an equivalent circuit is developed. It is shown that there 
is a 1:l correspondence between elements of the equivalent circuit and higher order modes 
which exist in the parallel-plate waveguide formed by the ground plane and the reflecting 
sheet. For the special case where the configuration is treated as a microwave circuit 
tee junction, the waveguide widths which give the best impedance match are seen to be 
0.04 wavelength for the feed guide and 0.03 wavelength for the second guide. 

Based on the 

Numerical computations of the reflection coefficient, derived from the aperture 
admittance, are compared with both the experimental and theoretical results of a similar 
problem which is solved by application of the geometrical theory of diffraction. General 
agreement between the two theories except for distances in the vicinity of integral multi- 
ples of one half-wavelength is obtained. It is in these regions that strong interactions 
between the antenna and the reflecting sheet a r e  exhibited. It is believed that the differ- 
ences in agreement in these regions are due to computational inaccuracies associated 
with the diffraction theory approach, since it is possible to  ascertain the accuracy of the 
results based on the Fourier transform technique by means of the integral test. 

Finally, for various aperture widths, a Smith chart is employed to  show that as the 
distance between the aperture and the reflecting sheet is increased, the admittance locus 
tends to  coalesce about the admittance value for  an infinite half-space. 

INTRODUCTION 

The admittance of an aperture antenna is usually determined, either theoretically o r  
experimentally, under the condition for  which the antenna radiates into free space. How- 
ever ,  if the antenna is then required to  operate in the vicinity of reflecting obstacles, 



deviations in the free-space admittance value occur. These deviations are functions of 
both the aperture geometry and the distance between the aperture and the obstacle. 

Early studies of the effect of reflecting obstacles on antennas were concerned with 
the interaction between antennas and radomes (ref. 1) and with feed antennas for parabolic: 
reflectors (ref. 2). Recent studies have been motivated by a need to  relate the properties 
of a plasma to  the admittance of an aperture antenna which radiates into the plasma 
(refs. 3 to 8). 

The problem considered in this paper is the aperture admittance of a ground-plane- 
mounted, transverse electric and magnetic mode-excited, parallel-plate waveguide illu- 
minating a perfectly conducting sheet located normal to  the guide axis. The guide and 
ground plane may be visualized as two perfectly conducting 90' wedges, the medium being 
the same on both sides of the aperture. The geometry of this problem is a special case 
of that treated by Tsai (ref. 8), who employed the geometrical theory of diffraction 
(refs. 9 to 12) to study the reflection coefficient of parallel-plate waveguides having arbi- 
t ra ry  wedge angles. In fact, the inherent advantage of this theory is that geometries for 
which the wave equation is not separable are readily handled. 

For wedge angles of 90°, it is possible to  employ the Fourier transform technique 
to  develop an aperture admittance expression where both dielectric-conductor and 
dielectric-dielectric boundaries may be treated. 
limited to dielectric-conductor boundaries, since canonical solutions involving dielectric 
dielectric boundaries are not presently available. 
technique not only provides a check case for the diffraction theory approach of Tsai, but 
also allows one to  obtain a physical interpretation of mode propagation in  the parallel- 
plate waveguide formed by the ground plane and the reflecting sheet. 

However, wedge diffraction theory is 

Furthermore the Fourier transform 

In this paper the Fourier transform technique is applied to  derive an expression 
for  the aperture admittance, and an equivalent circuit for the aperture is developed. The 
geometrical configuration is then treated as a parallel-plate waveguide microwave cir-  
cuit tee junction. Numerical computations of the conductance and the susceptance for 
this junction a re  given. 

More extensive numerical computations of results are presented next. First, the 
magnitude and the phase of the reflection coefficient for the 0.278 wavelength aperture are 
computed and compared with both the experimental and the theoretical results of Tsai. 
Then, computations of the expression derived by Compton (ref. 5) for the aperture admit- 
tance of an infinite medium (that is, the admittance in the absence of the reflecting sheet) 
a r e  presented. For  each of several  aperture widths, admittance computations as a func- 
tion of the reflecting sheet distance a r e  given. The admittance of the same aperture for 
an infinite medium is also shown for comparison. A particular Fourier transform of 
importance in this study is evaluated in appendix A. Finally, the problem is reformulated 
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when the parallel-plate waveguide aperture is replaced by a TEio  mode-excited rectan- 
gular waveguide. This formulation is presented in  appendix B. 

SYMBOLS 

A magnetic potential function 

- 
A Fourier transform of magnetic potential function 

a aperture width 

an pole locations of contour integral 

B aperture susceptance 

b normalized aperture susceptance 

Ci,C2,C3,C4 arbitrary spectral  constants 

Di7D2,D3,D4 particular constants, defined in appendix B 

d distance between aperture plane and reflecting sheet 

E electric field intensity 

E 
- 

Fourier transform of electric field intensity 

F electric potential function 

F 
- 

Fourier transform of electric potential function 

G aperture conductance 

G(x) ,G(x,y) arbitrary functions 

- 
G(kx),E(k,,ky) Fourier transforms of arbitrary functions 

g normalized aperture conductance 

g(x) ,g(xx) particular functions, defined in appendix B 
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H magnetic field intensity 

H 

H o ( ~ )  

h(y) ,h(yA) 

Im( 1 

j = J - 1  

Jo( ),KO( ),YO( ) 

- 
Fourier tranform of magnetic field intensity 

Hankel function of second kind and zero order 

particular functions, defined in appendix B 

imaginary part of a complex variable 

Bessel functions 

k 

k' 

k' 

M 

N 

n 

P 

P 

q 

Re( 1 

RO 

V O  

W 

4 

propagation constant 

phase shift constant 

attenuation constant 

upper summation index 

largest integer satisfying inequality, N < 

mode number; variable of summation 

complex power per unit length (per unit a r e a  in appendix B) 

normalized phase-shift constant 

normalized attenuation constant 

real  part of a complex variable 

reflection coefficient (current) 

aperture voltage 

complex variable 

x 



X,Y ,Z 

Y aperture admittance 

YO characteristic admittance 

Y normalized aperture admittance 

Ly attenuation constant 

P phase-shift constant 

Y propagation constant 

distance along X-, Y- and Z-axes 

6," = f ,n#o lyn=O Kronecker delta 

E 

e 

x 

P 

P =  

(T 

0 

V2 

permittivity 

x-directed propagation constant in absence of reflecting sheet 

wavelength 

permeability 

conductivity 

frequency in radians/sec 

Laplacian operator 

Subscripts: 

XYY ,z 

x 

n 

measured along respective coordinate axes 

indicates quantity of length measured in wavelengths 

mode order for parallel-plate waveguide 

I 
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mn mode order for rectangular waveguide 

An aster isk denotes a complex conjugate. An arrow over a symbol denotes a vector 
quantity and a circumflex denotes a unit vector quantity. 

THEORY 

Expressions for the aperture admittance and the reflection coefficient of a trans- 
verse electric and magnetic (TEM) mode-excited parallel-plate wave-guide opening on to 
a perfectly conducting ground plane and illuminating a perfectly conducting sheet a r e  
derived in this section. The geometry of the problem is shown in figure 1. A parallel- 
plate waveguide, of width a and infinite in extent in the y-direction, opens on to a per- 
fectly conducting ground plane, infinite in extent in both the x- and y-directions. The 
coordinate origin lies at the center of the aperture. Located parallel to and spaced a 
distance d from the aperture plane is a perfectly conducting sheet, infinite in extent in 
both the x- and y-directions. The medium in both the parallel-plate waveguide and the 
region between the aperture and the reflecting planes is assumed to be lossless and homo- 
geneous, with permittivity E and permeability p .  One may think of the configuration 
as being a parallel-plate waveguide of width a feeding a second parallel-plate waveguide 
of width d. 

For the two-dimensional problem under consideration, the fields a r e  assumed to be 
independent of y. Under this condition, it is readily deduced from Maxwell's two curl  
equations that the electric and magnetic field components may be decoupled into two inde- 
pendent sets,  one transverse electric (TE) and one transverse magnetic (TM) to the 
Y-axis. A transverse electric and magnetic mode field, the magnetic field being oriented 
in the y-direction, is assumed to be incident on the aperture from the negative z-direction. 
Therefore, only the set  of components transverse electric to the Y-axis need to be consid- 
ered in the formulation of the aperture admittance. The time convention ,jot is incor- 
porated throughout this paper. 

Because of the discontinuity at the aperture, higher order transverse magnetic (TM 
to the Z-axis) modes, some o r  all of which may be evanescent, will be induced in the 
aperture and wi l l  tend to  propagate back into the waveguide along with the reflected trans- 
verse electric and magnetic (TEM) mode. If it is assumed that the aperture width is suf- 
ficiently below the cutoff wavelength of the first propagating higher order mode (that is, 
the TM2 mode, which propagates for an aperture width of one wavelength), one may then 
assume that the total aperture electric field consists of only the dominant mode field, 
that is, the TEM field. The aperture electric field E,(x,O) is then given by 
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Figure 1.' The ground-plane-mounted parallel-plate waveguide i l l umina t ing  a ref lect ing sheet. 
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where Vo is the root-mean-square aperture voltage. The normalizing factor - 1 is 
Liz 

the TEM mode function (see, for example, ref. 13) for  the particular waveguide cr'oss 
section under consideration. 

The aperture admittance Y is then given by 

P* y=- 
P o l 2  

where P is the complex power flow through the aperture per unit length (per meter) in 
the y-direction and where the asterisk denotes the complex conjugate. In te rms  of the 
aperture fields, the aperture admittance is 

Since the aperture electric field is known (from eq. (1)) the problem is reduced to deter- 
mining the aperture magnetic field Hy(x,O) arising as a result  of the given aperture 
electric field, or alternatively, determining a relationship between the aperture electric 
and magnetic fields. This relationship is obtained by solving the boundary value problem 
for the fields in the region between the aperture and the reflecting planes, and evaluating 
the results in the aperture plane. 

In the region between the aperture and the reflecting planes, the electric field com- 
ponents Ex(x,z) and E,(x,z) a r e  obtained readily f rom a knowledge of the magnetic 
field Hy(x,z) in this region. In particular, 

The magnetic field must satisfy the two-dimensional wave equation 

a2Hy(x,z) a2Hy(x,z) + + k2Hy(x,Z) = 0 
ax2 az2 

where 

The boundary conditions are:  (1) the tangential electric field must vanish on all con- 
ducting surfaces, and (2) the tangential electric field on the aperture must be equal to the, 
TEM field, which acts as an equivalent magnetic surface current source for the fields in 
the region between the aperture and the reflecting planes. Thus, 
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Ex(x,d) = 0 (7) 

EX(x,O) = 0 

For the radiation conditions to  be met, it is further required that fields propagating in the 
=-directions be either attenuated or phase retarded as 1x1 increases. 

differential equation by assuming a Fourier transform1 solution for Hy(x,z) 
The wave equation may be converted from a partial differential equation to  a total 

of the form 

Substitution of equation (9) into equation (5) then gives 

where 

kz2 = k2 - kx 2 

The general solution of equation (10) is simply 

where Cl(kx) and C2(kx) a r e  two arbitrary "spectral constants" to  be determined 
from the boundary conditions (eqs. (7) and (8)). Substituting equation (12) into equation (9) 
and the result into equation (4) and making use of the Fourier transform definition then 
establishes 
-1 ___ 

'In this paper the one-dimensional Fourier transform pairs G(x) and E(kx) are 
defined by the relations 

J -m 
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dEy(kx 9 2 )  I 

= - jw Ex(kx,z) 
dz 

or 

Evaluation of equation (14) at z = d and substitution of equation (7) into the result gives 

Application of equation (12) to equation (1 5) yields 

Consequently , 

Ey(kx,z) = 2C~(kx)ejkzdcos[kz(z - dg 

The boundary condition (eq. (8)) is used to  determine the remaining spectral con- 
stant. Substitution of equation (17) into equation (13) and evaluating the result at z = 0 
gives 

j ~ ~ j X ( ~ , o )  
Cl(kX) = - (18) 

2 k, e’ kzdsin( kzd) 

Hence 

where 

H,(kx,z) = - j @eEx(kx,O)cos Bz(z - dg 

kz sin(kzd) 

Substituting equation (8) into equation (20) gives 
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Evaluating equation (19) at z = 0 yields the aperture magnetic field transform in te rms  
of the aperture electric field transform, that is, 

The aperture admittance as given by equation (3) may be found by substituting equa- 
tion (21) into equation (22), performing the indicated inverse transform to obtain Hy(x,O), 
and then substituting the result, along with equation (l), into equation (3) and performing 
the integration over the aperture. However, it is convenient to use an alternate approach 
(ref. 5, p. 22) to obtain an expression for the aperture admittance. Since by equation (8) 
the tangential electric field must vanish on the ground plane, the limits of integration on 
equation (3) may be extended to infinity without affecting the result. Then by Parseval's 
theorem2, equation (3) becomes 

Substitution of equation (22) into equation (23) then yields the result 

which becomes, upon substitution of equation (21), 

. .. . 

2For the Fourier transform pairs 

Parseval's theorem states 
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This integrand may be rearranged and Parseval's 

G1(kx) = 
k, tan(kzd) 

theorem may be used again. Let 

(26) 

By definition of the inverse transform 

This integral is evaluated by residue theory. The result, as given by Compton (ref. 5, 
p. 24), is 

Similarly , 

The integral in equation (30) is also evaluated by residue theory. Because this integral 
admits to physical interpretation, details of the evaluation of this integral a r e  given and 
a r e  discussed in appendix A. The requirements for the behavior of the fields for large 

1x1 a r e  taken into account in appendix A. It is found that the poles of the integrand, 
namely, 

(n = 0, 1, 2, . . .) (31) 

give rise to discrete waveguide modes (transverse magnetic to the x-direction) which 
propagate in  the &x-directions. From appendix A, the inverse transform in equation (30) 
is 
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e-jkxlxl 

n=O (1 + FOn)kx 

where 6on is the Kronecker delta; that is, 

and where the waveguide modes kx a r e  now dependent on n and are given by 

that is, the correct branch of k,, as defined implicitly by equation (ll), is chosen to 
insure proper behavior of the fields for large 1x1. 

Then by use of Parseval 's  theorem, equation (25) becomes 

r 1 1 
(3 5) 

which upon rearranging and taking advantage of the evenness of the integrand integrated 
over a symmetric interval, becomes 

The integral in equation (36) is easily evaluated and the result is 

s," (a - p'" dx = L{@ kx3 - cos(k,a)] - j kk,a) - (37) 
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Using equation (37) in  equation (36) yields 

- cos(kxa)] - j kkxa) - 
ad n=O 1 + 6,")kX3 

where the values of kx a r e  as given by equation (34). 

The expression in equation (38) may be manipulated into the form 

Y = G + j B  

where G is the conductance and B is the susceptance by letting 

and N be the largest integer such that the following inequality holds: 

2d N < -  x 
where 

(39) 

(42) 

(43) 

Then for kx rea  - kx = pn; whereas for k, imaginary, kx = -jan. By using these 
substitutions in equation (38) and rearranging, one finally obtains 

Hence 
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For purposes of numerical computations, it is convenient to normalize equation (44). 
Let 

and let 

a ax = - x 
d dx = 

y=Y=-- G + jB 
- g + j b  

y o  y o  

where Yo is the characteristic admittance of the medium, that is, 

WE Yo = k 

(4 7) 

(48) 

and where y, g, and b a r e  the normalized aperture admittance, conductance, and sus- 
ceptance, respectively. Then one obtains 

The reflection coefficient Ro (current) may then be found from the expression 

Y - 1  
Y + l  

Ro = - 

54 

(55) 

Convergence of the infinite se r ies  in equation (54) is readily established by means 
of the integral test ,  which may also be used to compute the susceptance to  any desired 
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accuracy. The rapidity of convergence is dictated by the second t e rm in the infinite 
ser ies .  

Based on the normalized equations (47) to  (55), a digital computer program was 
written to  perform computations of reflection coefficient and aperture admittance for 
selected values of aA and dA. In the computer program the infinite summation index 
in  equation (54) was replaced by a finite summation index M which was chosen to be 
200d~ .  The accuracy of the resulting computations was determined to  be approximately 
1 percent, which is at least as accurate as one might hope to achieve experimentally. 

RGSULTS AND DISCUSSION 

An Equivalent Circuit 

A useful equivalent circuit, readily amenable to physical interpretation, may be 
derived from equations (53) and (54). From these equations, it is revealed that the conduc- 
tance consists of the sum of a finite number of terms; whereas, the susceptance consists 
of the sum of an infinite number of terms.  Thus, one equivalent circuit for the aperture is 
a one terminal-pair network consisting of a finite number of conductance elements and an 
infinite number of susceptance elements, all elements being in parallel. 

An interesting relationship exists between the circuit elements and the higher order 
modes present in the parallel-plate waveguide formed by the ground plane and the 
reflecting sheet. These modes, transverse magnetic to  the x-direction, were mentioned 
earlier in connection with the evaluation of the integral in equation (30). For reflecting 
sheet distances less than one half-wavelength, there is only one te rm in the expression 
for  the conductance; that is, there is only one conductance element. Likewise, only one 
mode (the mode transverse electric and magnetic to the x-direction) propagates in this 
guide, whereas the higher order TM modes a r e  all evanescent. However, as the reflecting 
sheet distance is increased, a new te rm is added to the conductance expression (and a 
new conductance element to the circuit) each time the reflecting distance passes through 
an integral multiple of a half-wavelength, that is, whenever a new mode begins to propa- 
gate. (For brevity, the half-wavelength distances will be hereafter denoted as "the criti- 
cal distances . I t )  Moreover, each of the propagating modes contributes one susceptance 
element. However, the evanescent modes contribute only a susceptance element, as might 
be anticipated on physical grounds since these modes represent reactive energy storage. 
The equivalent circuit is shown in figure 2. 

As seen from equations (53) and (54), both the conductance and the susceptance 
become infinite at the critical distances, because of the infinite value of the particular 
conductance and susceptance elements representing the mode which begins to propagate 
at the corresponding critical distance. Physically, this condition implies that the 
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Propagating modes Evanescent modes 
A A 

f TEM (TMO) 

y = g  + j b +  

- - -  

Figure 2.- Equivalent circuit of the aperture. 

reflecting sheet behaves like a short circuit (infinite conductance), and the walls of the 
parallel-plate waveguide of width a may as well be transferred in  the positive z-direction 
a distance d (infinite susceptance) to  again come in contact with the reflecting sheet. 
Phenomena occurring at the critical distances a r e  discussed later in more detail. 

The Tee Junction 

If the reflecting sheet distance is restricted to values less  than one half-wavelength 
and the aperture width to values less  than one wavelength, then only the dominant mode 
propagates. From the microwave circuit viewpoint, the configuration is a parallel-plate 
waveguide tee junction. 

Numerical computations of the normalized aperture conductance and susceptance as 
functions of the aperture width and for  fixed values of the reflecting sheet distance were 
performed and a r e  presented in figure 3. It is seen from this figure that the normalized 
conductance is a maximum for an aperture width of 0.37 wavelength. This result may be 
deduced analytically by differentiating the conductance expression obtained from equa- 
tion (53), namely, 

(0 S dX < 0.5) (56) 

and setting the result equal to zero. The results in figure 3 may also be used to obtain 
waveguide dimensions for the best impedance match, which occurs for a normalized con- 
ductance of 1 and a normalized susceptance of zero. This condition is fulfilled for  a 
feed guide width ax of 0.04 waveleqgth and for the width dx of the second guide of 
0.03 wavelength. 

It is also noted that the conductance is zero for aperture widths of one wavelength 
and for reflecting sheet distances between 0 and 0.5 wavelength. This result  may be 
deduced from the following physical observation. If one may think of the two corners of 
the two wedges as line currents fed out of phase, there will be a net cancellation of the 
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radiation field in the ax-directions in the region between the ground plane and the 
reflecting sheet. However, it is believed that results for  this aperture width would be 
modified if the influence of the TM2 mode, which begins propagating back into the guide for 
this aperture width, is included in the formulation. 

Comparison of Fourier Transform Solution With Diffraction Theory Solution 

Computations of the magnitude and the phase of the reflection coefficient as a function 
of the reflecting sheet distance for a 0.278-wavelength aperture were performed in order 
to check the Fourier transform solution with the diffraction theory approach of Tsai. 
These results a r e  presented in figures 4 and 5. 

General agreement among the Fourier transform technique, the diffraction theory 
approach, and the experimental measurements is obtained, except for reflecting sheet 
distances in the vicinity of the critical distances. In figure 4, computations based on the 
Fourier transform technique indicate that the reflection coefficient magnitude is very sen- 
sitive with respect to the reflecting sheet distance for values in the vicinity of the critical 
distances. It is also evident that as the reflecting sheet distance is increased, the sensi- 
tivity becomes much more enhanced. In any event, the reflecting sheet will  always have 
an effect on the reflection coefficient, no matter how large the spacing. The parallel- 
plate waveguide formed by the ground plane and the reflecting sheet is essentially a one- 
dimensional cavity resonator. The configuration may also be thought of as a simplified 
version of a Fabry-Perot resonator with a single aperture feed. Both theoretical and 
experimental studies of microwave Fabry-Perot interferometers have been reported in 
references 14 to 18. 

Although both the experimental and the theoretical data of Tsai  a r e  in agreement for 
any reflecting sheet distance, both a r e  believed to be in e r ro r  in the vicinity of the critical 
distances. The theoretical data a r e  believed to be in e r r o r  because of an insufficient num- 
ber of bounce waves included in the formulation; whereas, the experimental data a re  
believed to be limited by diffraction losses. 

In both figures 4 and 5, the number of maxima and minima per half-wavelength for 
the diffraction theory data corresponds to the number of bounce waves (4) included in the 
computations. Possibly the diffraction theory curve would become smoother (and the peaks 
at each half-wavelength much higher) as the number of bounce waves included is increased. 

The theoretical model is believed to represent inadequately the experimental model 
in the vicinity of the critical distances because of diffraction losses, which occur basically 
for two reasons: (a) approximation of the infinite conducting planes by finite size planes, 
and (b) misalinement of the conducting planes from parallelism (ref. 18, p. 63). Diffraction 
losses a re  increased as the reflecting sheet distance is increased, but for a given distance 
a r e  reduced as the ground and the reflecting planes a re  enlarged (ref. 18, pp. 63-64). 
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In any event, it is believed that conductor and dielectric losses do not markedly 
contribute to  a lowering of the reflection coefficient at the critical distances. However, 
smooth, highly conducting, low loss surfaces such as silver a r e  certainly desirable 
(ref. 14, p. 222). Although dielectric losses in the medium between the ground and the 
reflecting planes would tend to reduce the reflection coefficient at the critical d i s tanced ,  
it is believed that for  a medium such as air, the effect is negligible. For example, for  
Fabry-Perot interferometers with air as a dielectric, Culshaw (ref. 16, p. 135) has 
obtained power reflection coefficients of 0.999 at critical distances for reflecting sheet 
spacings of 25 wavelengths, and Q values on the order of 300 000. 

Results of Aperture Admittance Computations 

Before considering the aperture admittance computations for the ground-plane- 
mounted parallel-plate guide illuminating the reflecting sheet other than the computations 
presented ear l ier ,  it is interesting first to consider the aperture admittance of the same 
guide with the reflecting sheet absent. For this case, the medium is then a lossless 
half-space. For  the same modal voltage - v0 and for the case where the medium is the 

same on both sides of the aperture, the admittance is then a special case of the result 
derived by Compton (ref. 5, p. 25). In normalized form, this result is 

F 

Equation (57) was programed for numerical computations on a digital computer. The 
results a r e  presented on a Smith chart for reference purposes in  figure 6. 

Computations of the normalized aperture admittance with the reflecting sheet present 
were then performed for four aperture widths (0.100, 0.278, 0.600, and 1.000 wavelengths) 
over the range of values for which no propagating higher order modes a re  reflected back 
into the waveguide (although the TM2 mode is on the verge of propagating for an aperture 
width of 1.000 wavelength). These computations a r e  shown on Smith charts in figure 7.  
The infinite medium point for the particular aperture width was taken from the admit- 
tance locus in figure 6. 

Several interesting observations may be deduced from figure 7. First, it is seen 
that as the reflecting sheet spacing is increased, the admittance locus tends to coalesce 
about the infinite medium point predicted by Compton. Second, the sensitivity of the 

31n appendix A, it is seen that the assumption of a slight loss causes the poles of 
the contour integral associated with the aperture admittance to shift off-axis. This condi- 
tion results in residues that, although large, a r e  nevertheless finite. 
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Figure 6.- The normalized aperture admittance of a ground-plane-mounted parallel-plate waveguide radiating into a 
lossless infinite half-space (after Compton, ref. 5, p. 25). 
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(after Compton) --t d-i 
Figure 7.- The normalized aper ture admittance of a ground-plane-mounted parallel-plate waveguide i l luminat ing 

a ref lect ing sheet, fo r  various aper ture widths. 
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Figure 7.- Continued. 
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(after Compton) 

Figure 7.- Continued. 
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(after Compton) 

Figure 7.- Concluded. 
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reflection coefficient with distance in the vicinity of the critical distances is evident on 
the admittance loci. Finally, it is noted that, for large distances, the susceptance is 
essentially independent of distances slightly greater than critical; whereas, the conduc- 
tance is practically independent of distance for distances slightly less  than critical. In 
any event, as already pointed out, the reflecting sheet theoretically will always have an 
effect on the aperture admittance no matter how large the reflecting sheet spacing, 
although the tolerances become extremely critical as the spacing is increased. 

CONCLUDING REMARKS 

The aperture admittance of a ground-plane-mounted, transverse electric and mag- 
netic mode-excited parallel-plate waveguide illuminating a perfectly conducting sheet was 
derived by a Fourier transform technique. It was shown that a 1:l correspondence exists 
between the elements of an equivalent circuit, which was developed from the admittance 
expression, and higher order modes present in the parallel-plate waveguide formed by the 
ground plane and the reflecting sheet. For the special case where the configuration was  
treated as a microwave circuit tee junction, the waveguide widths which give the best 
impedance match were seen to be 0.04 wavelength for the feed guide and 0.03 wavelength 
for the second guide. 

Numerical computations of the reflection coefficient, derived from the aperture 
admittance, were compared with both the experimental and theoretical results of a similar 
problem which is solved by application of the geometrical theory of diffraction. General 
agreement between the two theories was  obtained, except for distances in the vicinity of 
integral multiples of one half-wavelength. It is in these regions that strong interactions 
between the antenna and the reflecting sheet were seen to  occur. It is believed that the 
differences in agreement in  these regions a r e  due to  computational inaccuracies associ- 
ated with the diffraction theory approach, since it is possible to ascertain the accuracy of 
the results based on the Fourier transform technique by means of the integral test. 

Finally, for various aperture widths, a Smith chart was  employed to show that as the 
distance between the aperture and the reflecting sheet is increased, the admittance locus 
tends to coalesce about the admittance value for  an infinite half-space. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., June 21, 1967, 
125-22-02-02-23. 
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APPENDIX A 

EVALUATION OF AN INVERSE FOURIER TRANSFORM 

Because of the physical interpretation associated with the Fourier transform Gl(x) 
given in  equation (30) (and in equation (B53) in an analogous treatment of the rectangular 
waveguide aperture), it seems desirable to discuss the evaluation of this Fourier trans- 
form in more detail. The integral to be evaluated is 

-jkxx 
e dkX 

1 

where kz is defined implicitly by the relation4 

or by 

where 

kx2 = k2 - ky2 - kz2 

It is to be noted that 62 is rea l  for  a lossless medium. 

The integral in  equation (Al) may be evaluated by means of residue theory. Let a 
complex variable w be defined such that ReLwJ = kx and consider, in the complex 
w-plane, the contour integral 

where 

2 and where kwz = kZ2 wherever w2 = kx2. The path of integration in  the w-plane is 
then along the real axis, from -00 to  00. 

4The te rm ky2 is required to evaluate equation (B53) because of the three- 
dimensional nature of the problem in appendix B. For  equation (30), however, ky2 = 0 
throughout appendix A. 
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The integral in equation (A5) is of the form 

where 

Consideration of the expansion 

reveals that there are no branch points in the w-plane. 
are simple except as subsequently noted, and occur for values of kwz which satisfy the 
relation 

Furthermore,  the poles of f(w) 

kwzd = nr  (n = 0, 1, 2, . . .) (A101 

from which 

There are an infinite number of poles in the w-plane. For the particular case 
where the medium is lossless, as is assumed in this paper, the poles lie on either the 
real o r  the imaginary axis. The pole locations are given by 

where 
4 

and where e2 is hereafter assumed to be a rea l  quantity. As it turns  out, this is the 
proper branch to  choose to  insure proper radiation requirements for  large 1x1. 
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upper half-plane poles of f(w)) (x < 0) 

The location of the poles as a function of the reflecting sheet distance d is of 
interest. Let N be the largest integer for which the following inequality is satisfied: 

t?d N < -  
7r 

For the special case where N. = 

lying at the origin is a pole of second order. However, for N # 

sheet distance d, there are 2(N + 1) poles on the rea l  axis. The poles at w = * B  

migrate along the imaginary axis in toward the origin and out along the rea l  axis toward 
the fixed poles, as indicated in figure 8. A more rigorous discussion of the behavior of 
f(w) and G(x) for large d is deferred to the end of this appendix. 

For  a given value of d, some of the poles lie on the real axis. Since the path of 

, a pole l ies at the origin. Furthermore, the pole (") Bd fo r  any reflecting 

remain fixed 5 as d is varied. However, as d is increased, the remaining poles 

integration is along the r ea l  axis also, some modification is necessary before residue 
theory may be applied to evaluate the inverse transform. This modification may be made 
on a physical basis by assuming the medium to be slightly lossy. 
chosen, a lossy medium is characterized by the complex propagation constant 

For the time dependence 

k = k' - jk" (A1 5) 

where k' and k" a r e  rea l  and positive. For a slightly lossy medium (k' >> k"), it can 
be shown that the real axis poles a r e  shifted slightly off axis in  a direction clockwise with 
respect to the origin of the w-plane. On the other hand, the imaginary axis poles a r e  
shifted in a direction counterclockwise with respect to the origin. Thus, in using residue 
theory to evaluate the integral in equation (Al) ,  it will be assumed that the rea l  axis poles 
a r e  shifted slightly to  avoid the integration path. However, residues a r e  obtained under 
the assumption that these poles are on axis. 

Integration contours in the complex w-plane for the evaluation of the integral in 
equation (Al)  a re  as shown in figure 9.  As  can be seen from equation (A9), f(w) has the 
proper behavior to  assure  that the contribution to the integral along each of the large 
semicircles is zero as the radius becomes infinite. By Cauchy's residue theorem 

J at - j kxx 1 -jwx dk, = - - 2rj(sum of residues of f(w)e e 1 co 1 
Gs-, kz tan(kzd) 2lJ lower half-plane poles of f(w)) (x > 0) 

5The fixed poles represent the x-directed propagation constant for an infinite 
medium, that is, in the absence of the reflecting sheet. 

31 



APPENDIX A 

,-plane 

- O d  = 3.1 
T I  

w-p lane 

9.1 

Figure 8.- Location of t he  poles of f(w) fo r  two selected values of (F). The arrows indicate the  direct ion of migration 
of t h e  poles as d increases. 

From equations (A6), (A12), (A13), and (A16), the residues Res are found to  be 

where 
(A17) in  equation (A16) and combining the results yields 

tion is the Kronecker delta function defined in  equation (33). Using equation 
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-a4 -aN 
x - - - - - - x  

IJ-p lane 

Figure 9.- Integration contours for G(x). 

where the an are as given by equation (A13). This result  is used in equation (B53). 
For the case where ky2 = 0, e2 = k2 in equation (A13). This result is used in equa- 
tion (30). 

An examination of the behavior of G(x) as the reflecting sheet spacing becomes 
infinite is facilitated by means of equation (A9). Use of equation (A9), for real w, i n  
equation (Al)  gives, after some manipulation, 
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Let 

then as n increases by unity, 

Thus, the sum in brackets becomes 

" 
Ah 1 

a a --oo kz2 - h2 

As d approaches infinity, all the poles tend to approach the two fixed poles along the real 
axis in the w-plane and tend to  become very closely spaced6 in this region. 
h thus becomes a continuous variable, Ah approaches dh, and the summation may be 

The variable 

replaced by an integral.'' Thus, 

Now 

where the principal branch of the logarithm has been chosen. Using these results i n  
equation (A19) yields 

6In light of the correlation of the work in  this paper with the work of Compton 
(ref. 5), it is believed that, mathematically speaking, the fixed poles are converted to  
branch points as d approaches infinity. 

is similar to  the approach taken by Knop (ref. 19, p. 537). 
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This integral has been evaluated by Compton (ref. 5, p. 24). Thus, 

Proceeding one step further, if equation (A26) is used in place of equation (A18) in  
equation (32), equation (35) becomes 

This result is identical to  the expression of Compton (ref. 5, p. 25) for the aperture 
admittance of a parallel-plate waveguide radiating into an infinite lossless half-space, 
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APPENDIX B 

THE APERTURE ADMITTANCE OF A RECTANGULAR WAVEGUIDE OPENING 

ONTOAPERFECTLYCONDUCTINGGROUNDPLANEAND 

ILLUMINATING A PERFECTLY CONDUCTING SHEET 

The purpose of this appendix is to derive expressions similar to  those in the text, 
when the parallel-plate waveguide is replaced by a TElO mode-excited rectangular 
waveguide. The geometry of the problem is given in figure 10. The analytical approach 
to this problem is similar to  the approach used in the text. The total aperture electric 
field is assumed to be the field of the dominant mode, that is, the TElO mode. The 
aperture admittance is then found by finding an expression for the conjugate of the com- 
plex power flow through the aperture and dividing this result by the aperture voltage. 

The fields in the region between the aperture and the reflecting planes may be 
expressed as a superposition of two sets  of fields, one transverse electric (TE) and one 
transverse magnetic (TM) to the Z-axis .  The fields may be generated by an electric vec- 
tor potential function F(x,y,z) and a magnetic vector potential function x(x,y,z) given 

bY 

&,Y ,z) = A&,Y (B1) 

where 
a r e  expressed in te rms  of the two potential functions. In particular, 

is a unit vector in the z-direction. The electric and magnetic field components 

j w t  where the time dependence of e 
selected for both potential functions. The potential functions must satisfy the wave 
equations 

has been chosen and where the Lorentz gage has been 

(B6) 
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X 

/ 

plane 
(u = 03) 

Reflecting 
plane, z = d  
(u = -1 

Figure 10.- The ground-plane-mounted rectangular waveguide i l l umina t ing  a ref lect ing sheet. 
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V2 Ez(X7Y7z0 + k2Fz(x,y,z) = 0 

and where V2 denotes the Laplacian operator in rectangular coordinates. 

three to one by assuming double Fourier transform8 solutions of the form 
The number of independent variables in each wave equation may be reduced from 

Substitution of equation (B9) into equation (B6) and equation (B10) into equation (B7) leads 
to the total differential equations 

where 

+ kz2&(kx,ky,z) = 0 
d27i,(kx,kyyz) 

r) 

dZ” 

- - - - - - 

81n this paper the double Fourier transform pairs G(x,y,z) and E(kx,ky7z) a re  
defined by the relations 
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Solutions of equations (B11) and (B12) are, respectively, 

where Cl(kx,ky), C2(kx,ky), Cg(kx,ky), and C4(kx,ky) a re  arbitrary spectral constants 
to be determined from a knowledge of boundary conditions for the tangential electric field 
at both the aperture and reflecting planes. Substitution of equation (B14) into equation (B9), 
equation (B15) into equation (BlO), and the results into equations (B3) to (B5) give the 
relations: 

where use of the Fourier transform definition has been made. 

The aperture electric field is assumed to be the field of the TElO mode with the elec- 
t r ic  field vector in the x-direction. Elsewhere on the aperture plane and over the entire 
reflecting plane, the tangential electric field components must vanish. Thus, 

. 

J and for all x and y 

In the spatial frequency domain, the boundary conditions become 
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o r  

and 

Evaluation of equations (B16) and (B17) in the plane z = d and application of equa- 
tion (B23) lead to  the system of simultaneous equations: 

kx dA,(kx,ky,d) - 
~ + jkyFz(kx,ky,d) = 0 - -  

WE dz 

and Fz(kx,ky,d) a re  unknown quantities. Similarly, at z = 0, one f i z  (kx 7ky 4) 
dz where 

may establish the system of simultaneous equations 

and i?z(kx,ky,O) a r e  the unknowns and where Ex(kx,ky,O) is where 
given by equation (B22). Each of the two systems of simultaneous equations may be 
solved uniquely, inasmuch as kx # *jky, to give the pairs of boundary conditions 

dEz(kx ,ky , 0) 
d i  
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The four arbitrary spectral constants are determined upon application of equations (B28) 
to (B31) to equation (B14) and equation (B15). The results a r e  

w€kxEx(kx,ky, 0) 
Cl(kx,ky) = - 

2kzejkzd(kx2 + ky2)sin(kzd) 

Use of equations (B32) to (B35) in equation (B14) and equation (B15) and these results in 
equation (B18) gives the aperture magnetic-field transform in t e rms  of the aperture 
electric-field transform. The result is 

The complex power flow through the aperture is 

and the aperture admittance is given by 
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where the limits of integration on x and y have been extended to infinity. This exten- 
sion is permissible because Ex(x,y,O) is zero on the ground plane; hence, the result is 
not affected. Parseval's theorem9 is then used in equation (B38) to establish the relation 

Substitution of equation (B36) into equation (B39) gives 

and by use of equation (B19), this expression becomes 

Parseval 's  theorem may be used on equation (B41). Let 

~ _ _ ~  . . - . .~ _. 

9For the Fourier transform pair 

- -  
Gl(x,y) = 1 1 1  Gl(kx,ky) e-jkxxe-jkyy dk, dky 

(2.rr)Z -00 

Parseval 's  theorem is 
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Then 

The integrals in brackets are evaluated by residue theory. They are identical to  the inte- 
grals in Compton (ref. 5, pp. 64-65) and thus 

where 

and where 
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Also 

or 

n7r The pairs  of the integrand within brackets in equation (B52), namely, for k, = f-, 
d 

give rise to specific modes which propagate in the &x-direction in  the region between the 
aperture and the reflecting planes. Evaluation of this integral by residue theory (see 
appendix A) gives 

where the proper branch for kx, namely, 

kx = (k2 > ky2 + FT) 1 
must be chosen to insure proper behavior of the fields for large 1 x I. 

Substitution of equation (B53) into equation (B52) gives, after some manipulation, 

From Harrington (ref. 20) 
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where 

2 

p = 

Thus equation (B55) becomes 

1 (k2 < kz2) 

Use of equations (B46) and (B60) in  conjunction with Parseval's theorem and the properties 
of even functions gives 

This expression is separated into real  and imaginary parts by use of the relation 

(Be21 ( 2) 2j Ho (-jx) = Ko(x) 

Thus 

where 
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and where N is the largest integer for which 

k2 > (yr 
These expressions may be normalized by the choice of variables 

The final results a r e  

where 

xx = x_ 

Y x  = x 
x 

Y 

y = g + j b  

N is largest integer for which 

N < 2 d ~  
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h(yh) = D 3 ( b ~  - y ~ ) c o s  - WX + D4 sin - n,yX 
bX bX 

(n > 2dx) 

47 



REFERENCES 

1. Redheffer, R. M.: Microwave Antennas and Dielectric Surfaces. J. Appl. Phys., 
vol. 20, no. 4, Apr. 1949, pp. 397-411. 

2. Silver, Samuel, ed.: Microwave Antenna Theory and Design. Boston Tech. Publ., he., 
1964. 

3. Galejs, Janis: Admittance of a Waveguide Radiating Into Stratified Plasma. IEEE, 
Trans. Antennas Propagation, vol. AP-13, no. 1, Jan. 1965, pp. 64-70. 

4. Villeneuve, A. T.: Admittance of Waveguide Radiating Into Plasma Environment. 
IEEE, Trans. Antennas Propagation, vol. AP-13, no. 1, Jan. 1965, pp. 115-121. 

5. Compton, R. T., Jr.: The Admittance of Aperture Antennas Radiating Into Lossy Media. 
1691-5, Dept. Elec. Eng., Ohio State Univ. Res. Found., Mar.  15, 1964. 

6. Swift, C. T.; and Hodara, H.: Effects of the Plasma Sheath on Antenna Performance. 
Paper presented at AGARD/IRC Meeting on "Radio Wave Propagation Factors in 
Space Communications" (Rome, Italy), Sept. 1965. 

7. Jones, James Earl :  A Boundary Value Solution for an Infinite Parallel  Plate Trans- 
mission Line Radiating Into a Lossy Half-space. M. S. Thesis, Ohio State Univ., 
1966. 

8. Tsai, Leonard L.: The Reflection Coefficient of a TEM Mode Parallel-Plate Waveguide 
. Illuminating a Perfectly Reflecting Sheet. 2143- 1 (NASA Grant NGR-36-008-048), 

Dept. Elec. Eng., Ohio State Univ., Aug. 25, 1966. 

9. Keller, Joseph B.: Geometrical Theory of Diffraction. J. Opt. SOC. Am., vol. 52, no. 2, 
Feb. 196.2, pp. 116-129. 

10. Ohba, Y.: On the Radiation Pattern of a Corner Reflector Finite in Width. IEEE, 
Trans. Antennas Propagation, vol. AP-11, no. 2, Mar. 1963, pp. 127-132. 

11. Rudduck, R. C.: Application of Wedge Diffraction to Antenna Theory. NASA CR-372, 
1966. 

12. Nussenzveig, H. M.: Solution of a Diffraction Problem - I. The Wide Double Wedge, 
II. The Narrow Double Wedge. Phil. Trans. Roy. SOC. London, ser. A, vol. 252, 
no. 1003, Oct. 15, 1959, pp. 1-51. 

13. Ghose, R. N.: Microwave Circuit Theory and Analysis. McGraw-Hill Book Co., Inc., 
1963. 

14. Culshaw, W.: Reflectors for a Microwave Fabry-Perot Interferometer. IRE, Trans. 
Microwave Theory Tech., vol. MTT-7, no. 2, Apr. 1959, pp. 221-228. 

48 



15. Culshaw, William : High Resolution Millimeter Wave Fabry-Perot Interferometer. 
IRE, Trans. Microwave Theory Tech., vol. MTT-8, no. 2, Mar. 1960, pp. 182-189. 

16. Culshaw, William: Resonators for Millimeter and Submillimeter Wavelengths. IRE, 
Trans. Microwave Theory Tech., vol. MTT-9, no. 2, Mar. 1961, pp. 135-144. 

17. Culshaw, William: Further Considerations on Fabry-Perot Type Resonators. IRE, 
Trans. Microwave Theory Tech., vol. MTT-10, no. 5, Sept. 1962, pp. 331-339. 

18. Balanis, Constantine A.: Investigation of a Proposed Technique for Measurements of 
Dielectric Constants and Losses at V-Band Using the Fabry- Perot Principle. 
M.E.E. Thesis, Univ. of Virginia, 1966. 

19. Knop, Charles M.: The Radiation Fields From a Circumferential Slot on a Metal 
Cylinder Coated With a Lossy Dielectric. IRE, Trans. Antennas Propagation, 
vol. AP-9, no. 6, Nov. 1961, pp. 535-545. 

20. Harrington, Roger F.: Time-Harmonic Electromagnetic Fields. McGraw-Hill Book 
Co., Inc., c.1961. 

NASA-Langley, 1968 - 7 L-5645 

I 

49 



FIRST CLASS MAIL National Aeronautics and Space AdmiPirtntion 
WASHINGTON. D. C. 

POSTAGE AND FEES PAlD 

SPACE ADMINISrRATlON 
NATIONAL AERONAUTICS AK 

OFFICIAL BUSINESS 

POSTMASTER: If Undeliverable (Section 15, 
Postal Manual) Do Not Retu, 

“The aeronautical and space activities of the United States shall be 
conducted so as to contribute . . . to the expansion of human knowl- 
edge of phenomena in the atmosphere and space. The Administration 
shall provide for the widest practicable and appropriate dissemination 
of information concerning its activities and the results tbereo f .” 

-NATIONAL AERONAUTICS AND SPACH ACT OF 1958 

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS 

TECHNICAL REPORTS: Scientific and technical information considered 
important, complete, and a lasting contribution to existing .knowledge. 

TECHNICAL NOTES: Information less broad in scope but nevertheless of 
importance as a contribution to existing knowledge. 

TECHNICAL MEMORANDUMS: Information receiving limited distribu- 
tion because of preliminary data, security classification, or other reasons. 

CONTRACTOR REPORTS: Scientific and technical information generated 
under a NASA contract or grant and considered an important contribution to 
existing knowledge. 

TECHNICAL TRANSLATIONS: Information published in a foreign 
language considered to merit NASA distribution in English. 

SPECIAL PUBLICATIONS: Information derived from or of value to NASA 
activities. Publications include conference proceedings, monographs, data 
compilations, handbooks, sourcebooks, and special bibliographies. 

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech- 
nology used by NASA that may be of particular interest in commercial and other 
non-aerospace applications. Publications include Tech Briefs, Technology 
Utilization Reports and Notes, and Technology Surveys. 

Drtails on the availability of these publications may be obtained from: 

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

Washingion, D.C PO546 


